
第五章 空腹钢桁架有限元分析(四)

为了分析应力集中,在建立模型应力集中处采用0.008单元尺寸,在其他部位采用0.016单元尺寸。在两种单元交接的地方,用过渡单元形式将两种单元连接在一起,程序自动生成金字塔形的单元。

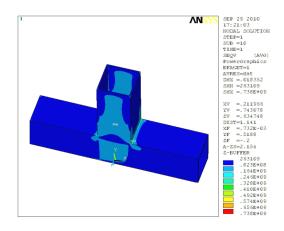
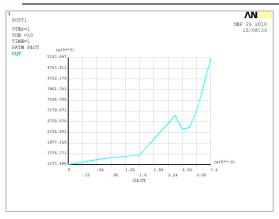


图 1.15a 节点网格划分情况


图 1.15b 节点综合应力云图

由上图可以看出,在应力集中处划分更细的网格使得应力集中情况更加明显,出现不真实的 应力情况,使得结构计算结果不准确。在实际分析中,常采用热点应力的外推的方法求解应力集 中处的应力。

热点应力的概念: 热点应力指最大结构应力或"结构中危险截面上危险点应力"。结构应力(或几何应力)指根据外载荷用简单(线弹性)力学公式以及类似的近似公式或有限元(划分有限元网格时只模拟结构整体尺寸,不反映局部细微尺寸变化,即不划分局部缺口或裂纹的有限元网格)计算求得的结构中的工作应力,不包括焊缝形状、裂纹、缺口等引起强烈局部应力集中,只依赖于构件接头处的宏观尺寸和载荷参量。

热点应力的外推原理: 热点应力呈线性分布 , 一般用外推的方法得到。为避开非线性应力峰值的影响 , 外推测量点应该距离焊趾有足够的距离。一般在距离焊趾0.4t(t为主板的厚度)处,非线性应力峰值基本消失, 外推点应该从这个位置开始。热点应力一般采用两点线性外推。国际焊接学会推荐的外推方法: 在距离焊趾0.4t 和 1.0t 处测量应力值, 进行两点线性外推。

根据上述有限元模型进行结构分析,发现腹杆与下弦杆件相交处为应力集中区域。方钢管之间为焊接连接,设焊脚尺寸为t=16mm,由焊缝应力分布可知在焊趾处为结构的热点。下图为在下弦上部平面上由32mm处相热点处画出的等效应力路径图。可以看出,在焊缝处结构应力出现突然增长的趋势。

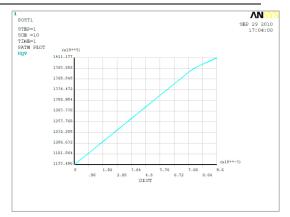


图 1.16 提取 0.4t 和 1.0t 节点处综合应力值,画出应力路径图 $\sigma_{0.4t}$ =115.5MPa, $\sigma_{1.0t}$ =141.1MPa,则焊趾处应力通过线性插值为: $\sigma_{1.0t}$ =158.2MPa 提取节点三个主应力见图 1.15 所示:

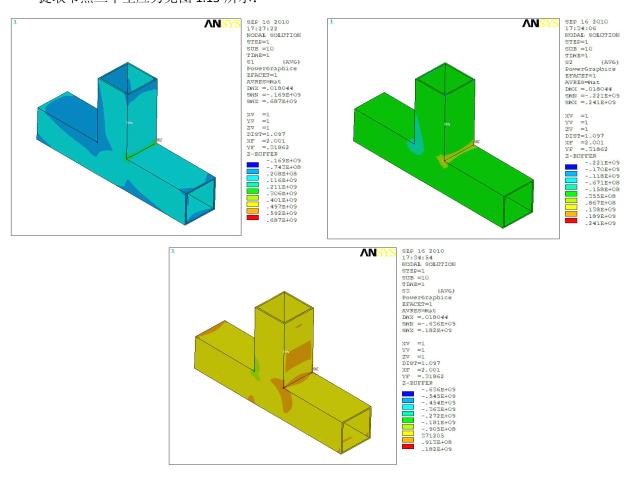


图1.17节点主应力云图

节点三个主应力的值为 σ_1 =687MPa, σ_2 =241MPa, σ_3 =182MPa ,均位于腹杆和下弦杆连接远离支座节点处。同时,对单独节点分析模型相应的受力进行了分析。其结果见下图所示:

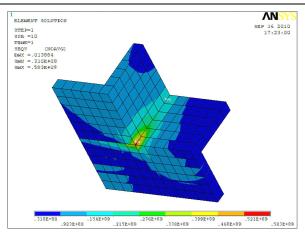


图 1.18 节点细部 Mises 等效应力云图

该节点的Mises等效应力最大值为583MPa。提取该单独节点的三个主应力如下图所示:

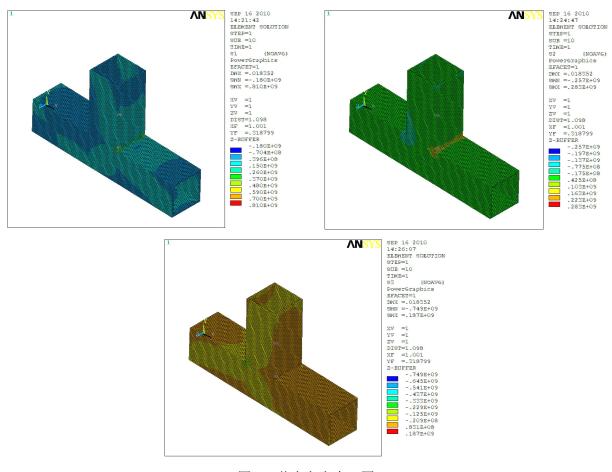


图1.19节点主应力云图

节点三个主应力的值为 σ_1 =810MPa, σ_2 =283MPa, σ_3 =187MPa ,均位于腹杆和下弦杆连接远离支座节点处。与上述整体精细化模型比较,应力值有所增加,其中第一主应力增加较为明显。

为验证精细化模型和节点分析模型的准确性,特提取 BEAM189 梁单元模型模型中截面

一、截面二、截面三(截面位置如下图所示)的内力和应力,并运用力学方法计算得出该截面的正应力,将其与实体单元建模相应截面的应力进行对比。运用内力计算截面最大正应力的公式如下:

$$I_{zz} = \frac{1}{12} (bh^3 - b'h'^3)$$
 $W = \frac{I_{zz}}{y}$ $\sigma = \frac{M}{W} + \frac{F_N}{A}$

式中 b=h=400mm , b'=h'=368mm , y 的值为 200mm , 截面面积 A=400×400mm²-368×368mm²=24576 mm²

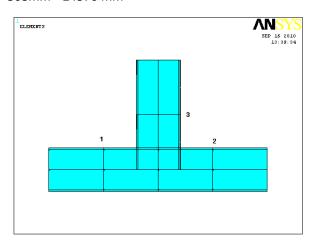


图 1.20 节点截面选取示意图

表三 节点截面应力计算表:(单位:kN, MPa)

	截面一	截面二	截面三
—————————————————————————————————————	253.75	214.18	413.90
弯矩 M	101.78	797.37	208.53
轴力 N	280.88	694.78	366.87
正应力σ(公式计算)	44.87	54.15	70.40
正应力σ(BEAM189 模型)	45.07	54.63	70.42
正应力σ(SHELL63 模型)	45.30	57.1	76.5
正应力σ (节点模型)	46.1	57.2	76.5
正应力σ (精细化模型)	45.02	55.8	71.8

由上表可以看出,精细化模型的应力比 BEAM189 模型的应力略大,但属于误差范围之内。这说明精细化模型和节点模型可以满足结构计算要求。

节点位移计算结果:

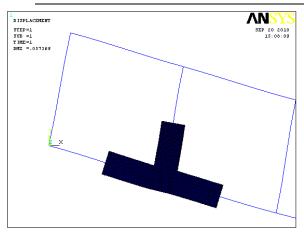


图 1.21 节点变形前后对比图 (变形缩放系数为 50)

表四:空腹钢桁架精细化模型轴向位移(单位: mm)

节点编号	精细化模型		BEAM189模型			
1 以编 5	UX	UY	UZ	UX	UY	UZ
1	0.055	-6.02	0	0.056	-6.05	0
2	0.25	-18.30	0	0.23	-18.20	0
3	3.86	-12.24	0	3.93	-12.22	0

由上表可以看出,精细化模型位移与 BEAM189 模型差距不大,属于误差范围之内附:静力分析命令流如下(beam189+solid95)

/clear	wprota,,90
/prep7	asbw,all
k,1	wpoff,,,-0.368
k,2,0.2	asbw,all
k,3,0.2,0.4	arsym,x,all
k,4,0,0.4	wpcsys
a,1,2,3,4	aglue,all
blc4,,0.016,0.184,0.368	et,1,plane82
asba,1,2	lesize,all,,,1
wpoff,0.184	amesh,all
wprota,,,90	secwrite,mybox
asbw,all	finish
wpoff,,0.016	/clear

/prep7	*do,i,32,61
et,1,beam189	l,i,i+1
et,2,solid95	*enddo
et,3,mesh200,6	latt,1,,1,,1000,,1
mp,ex,1,2.06e11	lesize,all,,,2
mp,dens,1,7800	latt,1,,1,,1000,,1
mp,prxy,1,0.28	lmesh,all
mp,ex,2,2.06e11	lsel,u,,,all
mp,prxy,2,0.28	allsel,all
mp,dens,2,7800	wpoffs,1
sectype,1,beam,mesh	wprota,,,-90
secread,mybox,,,mesh	blc5,0,0,0.4,0.4
k,1000,5,5	blc5,0,0,0.368,0.368
k,1	asba,1,2
k,31,30	esize,0.016
kfill,1,31,29,,,1	amesh,all
k,32,,2	esize,,125
k,62,30,2	vext,all,,,2
kfill,32,62,29,,,1	wpstyl,defa
k,63,2,1	wpoffs,2,0.2
l,1,2	wprota,,-90
1,63,34	blc5,0,0,0.4,0.4
l,1,32	blc5,0,0,0.368,0.368
*do,i,5,31,2	asba,11,12
l,i,i+31	esize,0.016
*enddo	amesh,13
*do,i,4,30	esize,,63
l,i,i+1	vext,13,,,,1
*enddo	allsel,all

nummrg,all FITEM,2,-148

numcmp,all SFBEAM,P51X,1,PRES,30000, , , , , ,

wpstyl,defa allsel,all

!刚性区域 nsel,s,node,,1

nsel,s,loc,x,1 nsel,a,node,,3,7,1

nsel,r,loc,y,-0.2,0.2 nsel,a,node,,9,118,1

cerig,2,all !连接点位于梁单元上 nsel,a,node,,120,432,1

nsel,s,loc,x,3 d,all,uz

nsel,r,loc,y,-0.2,0.2 allsel,all

cerig,119,all d,1,ux

nsel,s,loc,y,1 d,1,uy

nsel,r,loc,x,1.8,2.2 d,112,uy

cerig,8,all allsel,all

/solu acel,,10

FLST,2,60,2,ORDE,2 antype,0

FITEM,2,89 wpstyl,,,,,,2

solve

1.4.3 屈曲分析

本文进行了恒载与活载共同作用下的屈曲分析: ANSYS在工程分析中常常需要求解在恒载作用下活载的屈曲荷载,而不是"恒载十活载"的屈曲荷载,对于施加了不同类型的荷载,应将所有荷载按该荷载系数缩放即为屈曲荷载。将得出的屈曲荷载系数代入公式可以得出屈曲荷载,计算公式如下:

屈曲荷载=恒载+屈曲荷载系数×活载

本文中作用于梁上的恒载取20kN/m,活载取10kN/m,计算活载作用下的屈曲荷载系数如下:

表五:有限元空腹钢桁架模型屈曲系数与屈曲荷载

模型单元	一阶屈曲荷载系数	屈曲荷载系数×活载	恒载+屈曲荷载系数×活载
BEAM3	268	2680kN	2700kN
BEAM4	268	2680kN	2700kN
BEAM44	158	1580kN	1600kN
BEAM188	162	1620kN	1640kN
BEAM189	162	1620kN	1640kN
BEAM189+SOLID95	129	1290kN	1310kN

由上表可以看出,由 BEAM3/BEAM4 单元建立的 Eluer 梁模型一阶屈曲荷载系数要高于 BEAM44/BEAM188/BEAM189 单元 Timoshenko 梁模型。在上表统计的数据中,考虑了剪切变形的 Timoshenko 梁元 BEAM44/BEAM188/BEAM189 的计算结果更接近于真实值。

图 1.22a ANSYS 一阶屈曲模态

图 1.22b SAP2000 一阶屈曲模态

附: 屈曲分析命令流如下(beam188)

/prep 7	k,1
et,1,beam188	kgen,16,1,,,2,,,,1
keyopt,1,4,2	kgen,2,1,16,,,2,,16
keyopt,1,3,2	*do,i,1,15
sectype,1,beam,hrec	l,i,i+1
secdata, 0.4, 0.4, 0.016, 0.016, 0.016, 0.016	*enddo
mp,ex,1,2.06e11 !Q235钢材	*do,i,1,15
mp,prxy,1,0.28	l,i+16,i+17
mp,dens,1,7800	*enddo
!!!建立结构几何模型	*do,i,1,16

l,i,i+16	finish
*enddo	/solu
latt,1,1,1,,,,1	antype,buckle
allsel	bucopt,lanb,5
lesize,all,0.5	mxpand,5
lmesh,all	outres,all,all
lsel,u,,,all	solve
/solu	finish
nsel,s,loc,y,2	/post1
esln,s,1	set,list
cm,huozai,elem	
sfbeam,huozai,2,pres,10e3	
allsel,all	
nsel,s,loc,y,2	
cm,hengzai,node	
f,hengzai,fy,-10e3	
allsel,all	
pstres,on	
d,all,uz	
d,1,ux	
d,1,uy	
d,58,uy	
allsel,all	
acel,,10	
antype,0	
time,1	
nsub,10,20,5	
outres,all,all	

solve